
We recap the results of following AI Endurance’s cycling training plan that saw our FTP grow according to AI Endurance’s predictions, following the instructions on how to improve FTP.
We - Dominik and Markus of AI Endurance - have been training for Paris to Ancaster 2020 , a gravel grinder race that was supposed to happen on April 26th 2020 but was cancelled because of Covid-19.
Nevertheless, we stuck to AI Endurance’s 8 week cycling training plan and saw great improvements. If you missed earlier posts about our journey, you can find them here:
Dominik grew his FTP to 283 W in 8 weeks, slightly better than the prediction of 261 W, achieving a new PB with AI Endurance’s individualized training plan. His thoughts:
Markus grew his FTP to 299 W in 8 weeks, also slightly better than AI Endurance’s prediction of 293 W. His thoughts:
Check out Markus’ FTP test on Strava:

Also, see how his FTP improved over time compared to AI Endurance’s predictions:

Don’t waste your time with one-size-fits-all training plans. Use AI Endurance’s predictive data-driven approach instead to improve your FTP and get that PB! Get your own personalized training plan today!

by Grant Paling. In his last blog post in a series of three, "I don’t really know how I’m doing," Grant reflects on self-assessment and personal growth, emphasizing the role of AI Endurance in setting realistic goals and predicting performance in triathlons.

by Grant Paling. In my last blog, I closed the chapter on my European Championship race in Portugal. It definitely was an intense period leading up to, during and after the race. So many emotions, so much effort invested and then…what’s next?

If you do not want to use Zwift or other virtual platforms, you can simply execute your AI Endurance cycling workouts by letting your Garmin control your smart trainer. For example, let your Garmin Edge 530 or Forerunner 945 control your Wahoo Kickr trainer. All smart trainers supporting the ANT+ FE-C protocol, including Tacx, are supported.

by Markus Rummel. We present the first results of AI Endurance's new capability to calculate Respiration Frequency (RF) from in-activity heart rate variability (HRV) data. RF demonstrates its potential in assessing the validity of HRV threshold determination.